AVL是平衡搜索二叉树,它的主要特点在于:(1)左子树和右子树的高度差绝对值<1,(2)树中的每个子树都是AVL树,(3)每个节点都有一个平衡因子(-1、0、1),平衡因子的大小等于右子树的高度减左子树的高度

      下面就是一个AVL树:

其中,这个树满足左子树和右子树的高度差绝对值小于1,每个节点的平衡因子都满足条件。

      下面是AVLTree中节点的结构:

template 
struct AVLTreeNode{     K _key;     V _value;     int _bf;     //节点的平衡因子     AVLTreeNode
* _parent;     //指向节点的父节点     AVLTreeNode
* _left;       //指向节点的左孩子     AVLTreeNode
* _right;      //指向节点的右孩子          AVLTreeNode(const K& key = K(), const V& value = V())    //构造节点          :_key(key)          , _value(value)          , _parent(NULL)          , _left(NULL)          , _right(NULL)          , _bf(0)     { }};

      下面讨论一下AVLTree中插入节点的情况:

           当插入一个节点时,如果这个节点的父节点的平衡因子不满足AVLTree的特点,这时就需要对AVLTree进行调整,直到满足AVLTree的条件。

(1)左单旋

(2)右单旋

(3)左右双旋

(4)右左双旋

       针对上面的情况,下面是具体的程序实现:

#pragma once#include 
#include 
//实现平衡搜索二叉树//构造AVL树的节点(使用三叉链表)template 
struct AVLTreeNode{     K _key;     V _value;     int _bf;     AVLTreeNode
* _parent;     AVLTreeNode
* _left;     AVLTreeNode
* _right;          AVLTreeNode(const K& key = K(), const V& value = V())    //构造节点          :_key(key)          , _value(value)          , _parent(NULL)          , _left(NULL)          , _right(NULL)          , _bf(0)     { }};template 
class AVLTree{     typedef AVLTreeNode
 Node;public:     AVLTree()     //初始化根节点          :_root(NULL)     { }          bool Insert(const K& key, const V& value)    //插入     {          //根节点判空          if (_root == NULL)          {               _root = new Node(key, value);               return true;          }          //将数据先插入到树中          Node* cur = _root;          Node* parent = NULL;          Node* tmp = new Node(key, value);          while (cur)          {               if (cur->_key < key)               {                    parent = cur;                    cur = cur->_right;               }               else if (cur->_key > key)               {                    parent = cur;                    cur = cur->_left;               }               else               {                    return false;               }          }          if (parent->_key > key)          {               parent->_left = tmp;               tmp->_parent = parent;          }          if (parent->_key < key)          {               parent->_right = tmp;               tmp->_parent = parent;          }                    //对树进行调整          cur = tmp;          parent = cur->_parent;          bool isRotate = false;          while (parent)          {               if (parent->_left == cur)     //插入左节点,父亲节点的平衡因子-1               {                    parent->_bf--;               }               if (parent->_right == cur)   //插入右节点,父亲节点的平衡因子+1               {                    parent->_bf++;               }               if (parent->_bf == 0)                     //调整过程中,若碰到平衡因子为0的节点,就不用在继续调整               {                    break;               }               else if (parent->_bf == -1 || parent->_bf == 1)   //更新平衡因子               {                    cur = parent;                    parent = cur->_parent;               }               else               {                    if (parent->_bf == 2)                    {                         if (cur->_bf == 1)      //左单旋                         {                              _RotateL(parent);                         }                         else       //右左单旋                         {                              _RotateRL(parent);                         }                    }                    else           //=-2                    {                         if (cur->_bf == -1)      //右单旋                         {                              _RotateR(parent);                         }                         else                     //左右单旋                         {                              _RotateLR(parent);                         }                      }                    isRotate = true;               }               break;          }                    if (isRotate)          {               if (parent->_parent == NULL)               {                    _root = parent;                    return true;               }          }          return true;     }          void InOrder()     //后序遍历     {          _InOrder(_root);          cout << endl;     }          bool IsBalance()     {          if (_root == NULL)          {               cout << "root is null!" << endl;               return false;          }          return _IsBalance(_root);     }          int Heigth()     {          int heigthTree = 0;          Node* cur = _root;          while (cur)          {               if (cur != NULL)               {                    heigthTree++;               }               cur = cur->_left;          }          return _Heigth(_root, heigthTree, 0);     }    protected:     int _Heigth(Node* root, int heigthTree, int countNum)     {           if (root == NULL)          {               if (countNum > heigthTree)               {                    heigthTree = countNum;               }               return heigthTree;          }          _Heigth(root->_left, heigthTree, countNum++);          _Heigth(root->_right, heigthTree, countNum++);     }          bool _IsBalance(Node* root)     {          int bf = root->_right->_bf - root->_right->_bf;          if (bf == 0 || bf == 1 || bf == -1)          {               return true;          }          else          {               return false;          }          _IsBalance(root->_left);          _IsBalance(root->_right);     }         void _RotateL(Node*& parent)     //左单旋     {          Node* SubR = parent->_right;    //新建两个节点指针          Node* SubRL = SubR->_left;          parent->_right = SubRL;        //进行调整          if (SubRL)          {               SubRL->_parent = parent;          }          SubR->_left = parent;          SubR->_parent = parent->_parent;          parent->_parent = SubR;          parent->_bf = SubR->_bf = 0;    //更改引用计数          parent = SubR;     }          void _RotateR(Node*& parent)     //右单旋     {          Node* SubL = parent->_left;   //新建两个节点指针          Node* SubLR = SubL->_right;          parent->_left = SubLR;    //进行调整          if (SubLR)          {               SubLR->_parent = parent;          }          SubL->_right = parent;          SubL->_parent = parent->_parent;          parent->_parent = SubL;          parent->_bf = SubL->_bf = 0;          parent = SubL;     }          void _RotateRL(Node*& parent)     //右左单旋     {          Node* pNode = parent;          Node* subRNode = parent->_right;          Node* subRLNode = subRNode->_left;          int bf = subRLNode->_bf;          _RotateR(parent->_right);          _RotateL(parent);          if (bf == -1)          {               subRNode->_bf = 0;               pNode->_bf = -1;          }          else if (bf == 1)          {               subRNode->_bf = 1;               pNode->_bf = 0;          }          else          {               subRNode->_bf = 0;               pNode->_bf = 0;          }          subRNode->_bf = 0;     }          void _RotateLR(Node*& parent)     //左右单旋     {          Node* pNode = parent;          Node* subLNode = parent->_left;          Node* subLRNode = subLNode->_right;          int bf = subLRNode->_bf;          _RotateL(parent->_left);          _RotateR(parent);          if (bf == -1)          {               subLNode->_bf = 0;               pNode->_bf = 1;          }          else if (bf == 1)          {               subLNode->_bf = -1;               pNode->_bf = 0;          }          else          {               subLNode->_bf = 0;               pNode->_bf = 0;          }          subLNode->_bf = 0;     }          void _InOrder(Node* root)     {          if (root == NULL)          {               return;          }          _InOrder(root->_left);          cout << root->_key << " ";          _InOrder(root->_right);     }     protected:     Node* _root;};void Test(){     AVLTree
 ht;     /*ht.Insert(16, 1);     ht.Insert(3, 1);     ht.Insert(7, 1);     ht.Insert(11, 1);     ht.Insert(9, 1);     ht.Insert(26, 1);     ht.Insert(18, 1);     ht.Insert(14, 1);     ht.Insert(15, 1);*/          ht.Insert(4, 1);     ht.Insert(2, 1);     ht.Insert(6, 1);     ht.Insert(1, 1);     ht.Insert(3, 1);     ht.Insert(5, 1);     ht.Insert(15, 1);     ht.Insert(7, 1);     ht.Insert(16, 1);     ht.Insert(14, 1);          ht.InOrder();     cout<
<
<< ht.Heigth() << endl;}